

International Journal of Medical and Exercise Science

(Multidisciplinary, Peer Reviewed and Indexed Journal)

REVIEW ARTICLE

EFFECT OF VIRTUAL REALITY IN GAIT PARAMETERS AMONG STROKE- A SYSTEMATIC NARRATIVE REVIEW

Search engine: www.ijmaes.org

Amjad Annethattil^{1*}, Mohammad Farraj², Al-Madzhar Jundam Ahmadul³

Authors:

¹ Physiotherapy Specialist, Qatar Rehabilitation institute, Doha, Qatar

² Physiotherapist, Qatar Rehabilitation institute, Doha, Qatar

³ Director of physiotherapy, Qatar Rehabilitation institute, Doha, Qatar

Corresponding Author:

^{1*}Amjad Annethattil, Email: <u>aannethattil@hamad.qa</u>

ABSTRACT

Background of the study: Improving the lower limb (LL) motor recovery after stroke is a major task in order to improve the functional ability of the patient. We aim to complete a narrative review to determine the efficacy of virtual reality in Lower limb therapy approaches among post stroke. Methodology: A literature search was carried out. Overall, 14 Articles with 852 participants were included in the study. The patient who has had a stroke and received intervention virtual reality during practice of the treatment session: 14 studies were included in the review. Data Sources were searched from MEDLIWE, CINAHL and Cochrane library, Physiotherapy Evidence Database (PEDro) from 2000 till 2021. Result: The stroke patient who received VR interventions has showed improvement in their functional abilities. Various outcome measures were included in the studied Kinematic and kinetic gait parameters, 10 MWT, Functional walking ability, FUGL Meyer assessment(FMA-UE), Action reach arm test (ARAT), Wolf motor function test (WMFT), Box block test (BBT), Functional ambulation classification (FACO), Berg balance scale (BBS), Time up and go (TUG), Mini mental state examination (MMSE), Utrecht scale for evaluation of rehabilitation – participation (USER-P), Stroke specific quality of life(SS-QOL), Fatigue severity scale (FFS). Conclusion: This systematic narrative review reveals that VR intervention is effective to improve lower limb motor function, gait and balance functions of stroke patients. Virtual reality may allow therapists to deliver more repetitive training with more regular performance feedback and improving motor learning rate.

Key words: Stroke; Balance; Virtual reality; Gait; Rehabilitation

Received on 29th April 2023, Revised on 18th May 2023, Accepted on 30th May 2023 DOI:10.36678/IJMAES. 2023.V09I02.008

International Journal of Medical and Exercise Science 2023; 9(2)

INTRODUCTION

In stroke rehabilitation the recovery of gait is the major goal. Most of the patient who suffers from stroke has problems in various aspects like balance, coordination asymmetry and increased postural sway ⁽¹⁾. Balance plays a major role in maintaining the walking pattern and various functional tasks such as sitting and transformation sitting to standing and walking ⁽²⁾.

The gait pattern of individuals post-stroke is often characterized by difficulty in initiating movement, abnormal movement patterns on the affected side, decreased stance time on the paretic side, and premature toe off during terminal stance, as compared to healthy adults^(3,4)

Balance problem can lead to abnormal weight distribution patterns, so that less weight is taken through the weak leg. This pattern affects the static and dynamic balance, or responses to external perturbations which is seen in people with stroke ⁽⁵⁾.

Due to abnormal gait pattern and to maintain the balance patients tends to develop compensatory movements which affects the both affected and unaffected side. ⁽⁶⁾ This compensation movements leads to limitation of movements and affects the functional ability of the stroke patients, hence in stroke rehabilitation fall prevention and improving the walking pattern is the main focus ⁽⁷⁾.

Virtual reality (VR) is a form of interactive simulation by using computer hardware and software, for giving the patient an experience similar to real-world event.⁽⁸⁾Various studies have been conducted to analyze the

effectiveness of VR to improve the lower limb gait function and VR creates an environment which allows the patient to improve the motor skills⁽⁹⁾.

In VR, the user needs to see the virtual environment (VE) displayed or projected in a head-mounted display, desktop computer, television, or screen. The sound and the sense of touch create a VE which allows the patient to interact and perform the motor activity. VR consists of a hardware and software which connects the user with the environment and gives them a real-world effect which allows them to perform their motor task in a more effective way⁽¹⁰⁾.

METHODOLOGY

Search Strategy: A search to identify the articles to examine the effects of Virtual reality training in recovery of gait in subjects with stroke and records were identified. Data are collected from BIOMED CENTRAL, MEDLINE, EMBASE, ACRI Europa medicophysica, BMI, PEDRO, Cochrane central register of controlled trials (CENTRAL), American physical therapy association, Google Scholar etc. The key words are virtual reality, gait parameters, balance, FUGL - Meyer assessment (FMA- UE), Action reach arm test (ARAT), Wolf motor function test (WMFT), Box block test (BBT), Functional ambulation classification (FACO), Berg balance scale (BBS), Time up and go (TUG), Mini mental state examination (MMSE).

Selection Criteria:

Randomized controlled trials published between 2000 – 2021 was included in this study, original research articles published in English language with confirmed diagnosis of stroke. Exclusion Criteria were Sample included if patient with Down syndrome, if articles were published only as abstract, articles before 2000 and articles published in other languages.

Data Sources: Details of study parameters included in the study

Author name / study design	Article	Study duration/ sample size	Inclusion criteria	Interven tion	Outcome measure	Result
Anat mirelman, Benjamin L.Patritti,Paol o Bonato, Judith E. Deutsch Randomized controlled study.2010	Effect of Virtual Reality Training on Gait Biomecha nics of Individual s Post - Stroke	4 weeks / 15 men 3 women	Hemiparesis stroke with gait deficit	Study group (n=9) virtual reality (n=9) non virtual reality group	Kinematic and kinetic gait paramete rs	As a result of training, subjects in the VR group displayed a considerably greater increase in ankle power generation at push-off (p=0.036). The VR group demonstrate d a higher post-training change in ankle ROM (19.5%) than the NVR group (3.3%). Significant differences in knee ROM on the affected side during stance and swing were discovered, with the VR group showing the greatest

						alteration. There were no significant changes in hip kinematics or kinetics after training.
Yu- Hyung Park, Chiho Lee, Byoung– Hee Lee Randomized controlled study, 2013	Clinical Usefulnes s of the Virtual Reality – Based Postural Control Training on the Gait Ability in Patients with Stroke	Sixteen weeks- stroke patients	Ability to walk independently. Able to understand.	Study group (VR, n=8) experim ental group, (CPt,n= 8) control group	GAIT Rite system for spatiotem poral gait ability 10 MWT for functional gait ability	Study revealed that VR group showed significant improvemen t, except for cadence at post training and follow- up within the experimental group. Study revealed that there is, no obvious significant improvemen t was observed within the control group. In between group comparisons, the experimental group (VR group) showed significantly greater improvemen t only in stride length

						compared with the control group (P< 0.05), however, no significant difference was observed in other gait parameters.
Ki Kun Cho, Min Kyu Kim, Hwang-Jae Lee, Wan Hee Lee Randomized controlled study, 2015	Virtual Reality Training with Cognitive Load Improves Walking Function in Chronic Stroke Patients	4 weeks - Chronic Stroke Patients	Hemiparesis resulting from a single stroke, Chronic phase. Able to walk with or without the use of assistive device, Able to under- stand and follow simple verbal instructions, No severe heart disease or uncon-trolled hypertension	Study group (n=12) VRTCL group (n=12) VR group	Spatio- temporal gait paramete rs (GAIT Rite)	Suggesting that efficacy of VRTCL on the walking function under the dual task condition VRTCL may be an effective method for the achievement of independent walking in chronic stroke patients
Aiwei Yang, Wei-Hsung Hwang, Yi- Ching Tsai, Fu-Kang Liu, Lin-Fen Hsieh, Jen- Suh Chern Randomized controlled study,2011	Improving Balance Skills in Patients Who Had Stroke Through Virtual Reality Treadmill Training	14 Stroke Patients	Hemiplegia resulting from a single cerebrovascular accident and not from trauma Brain tumor Surgery Any other etiology	Study group (n=7) Experim ental group (n=7) control group	СОР	There is no significant improvemen t in COP related measure.

Huihui Cai, Tao Lin, Lina Chen, Huidan Weng, Ruihan Zhu, Ying Chen, Guoen Cai Randomized controlled study, 2021	Evaluating the Effect of Immersiv e Virtual Reality Technolog y on Gait Rehabilita tion in Stroke Patients	6 Months (Initial Stroke patient)	Aged 40-80 years Patients with ischemic cerebro-vascular disease who met the classification and diagnosis criteria of cerebrovascular disease confirmed by head CT or MRI scan. The first ever stroke and initial stroke onset of 1 Month or less, the patient can stand with the help of one person or with crutches and can walk at least 10 meters. Lower Limb muscle strength	Study Group (n=18) VRT group (n=18) non-VRT group	Primary Outcomes Functiona I walking ability. Secondar y outcomes MMT strength, Motor function of lower limbs	This study revealed an improved method of stroke rehabilitatio n. which can be helpful for clinical decision- making and future practice
			level of 3 or above.			
Ilona J.M. de Rooiji, Ingrid G.L. van de port, Michiel Punt, PimJ.M.Abbi nk-van Moorsel, MichielKorts mit, Ruben P.A.vanEijik,J ohanna M.A. Visser-Meily, Jan-Willem G.Meijer	Effect of Virtual Reality Gait Training on Participati on in Survivors of Subacute Stroke	6 Month	Diagnosed with stroke according to the World Health Organization Definition Stroke between 2 weeks and 6 months. Ability to walk without physical assistance, Age 18 to 80 years	Study group (n=28) VRT Group (n=27) Non- VRT Group	Utrecht scale for evaluatio n of rehabilita tion- participati on (USER- P)	This study reveals that there is no significant differences between the groups were found over time for the USER-P restrictions subscale (1.23;95% cl = -0.76 to 3.23) or

Randomized controlled study, 2021						secondary outcome measures Patients experience with VRT were positive, and no serious adverse events were related to the interventions
Ilona J.M. de Rooiji, Ingrid G.L. van de port, Johanna M.A. Visser- Meily, Jan- Willem G.Meijer Randomized controlled study,2019	Virtual reality gait training versus non- virtual reality gait training for improving participati on in subacute stroke survivors	6month and 2 weeks	Diagnosed with stroke according to the World Health Organization Definition. Stroke between 2 weeks and 6 months, Ability to walk without physical,	Study Group VRT group non-VRT group	Primary outcome USER-P Secondar y outcome Frequenc y and Satisfactio n scales of the USER-P Stroke Impact Scale- 16(SIS-16) Timed-up and Go (TUG) Stroke Specific Quality of Life Scale (SS-QOL)	The results of the study provide insight into the effect of VR gait training on participation after stroke
Chi-Ho Lee, Yumi Kim, Byoung-Hee Lee	Augment ed reality- based postural	6 month/ 21 stroke patients	A diagnosis of stroke for at least 6 months, not taking	Study Group Experim ental	TUG, BBS, Gait velocity cadence,	The result of this study provide evidence in

Randomized controlled study, 2014	control training improves gait function in patients with stroke		medication that can affect balance, Mini- Mental State Examination score <24, no pain or disability associates with acute musculoskeletal conditions, sitting to side lying with moderate assistance, sitting for longer than 10 seconds without support, standing without support for 1 minute.	group(n =10) control group (n=11)	step length, and stride length on both the paretic and non- paretic side	support of incorporating an AR environment into postural control training for improving gait of stroke patients.
Davidecorbet ta, Federico Imeri, Roberto Gatti Randomized or Quasi Randomized controlled study, 2015	Rehabilita tion that incorpora tes virtual reality is more effective than standard rehabilita tion for improving walking speed, balance and mobility after stroke	341 Participan ts	Adults (>18 years old) Clinical diagnosis of stroke (ischemic or hemorrhagic) No other pathological conditions affecting lower limb	VRBR using head mounte d devices or conventi onal worksta tion.	Walking speed Balance Mobility	In total, 15 trials involving 341 participants were included. When VRBR replaced some or all of the standard rehabilitatio n, there were statistically significant benefits in walking speed (MD 0.15 m/s, 95% CI 0.10 to 0.19), balance (MD

			_			24
						2.1 points on
						the Berg
						Balance
						Scale, 95% CI
						1.8 to 2.5)
						and mobility
						(MD 2.3
						seconds on
						the Timed
						Up and Go
						test, 95% Cl
						1.2 to 3.4).
						, When VRBR
						was added to
						standard
						rehabilitatio
						n, mobility
						showed a
						significant
						benefit (0.7
						seconds on
						the Timed
						Up and Go
						test, 95% Cl
						0.4 to 1.1),
						but
						insufficient
						evidence was
						found to
						comment
						about
						walking
						speed (one
						trial) and
						balance (high
						heterogeneit
						y).
Alexander V.	Stroke	10 days	Age 18–80 years	visual	Rivermea	Significantly
Zakharov,	Affected	15 uuys	with the first-	and	d Mobility	improves the
Vladimir A.	Lower	minutes	occurred acute	tactile	Index,	performance
Bulanov,	Limbs	daily	ischemic	biofeed	Fugl-	of standard
Elena V.	Rehabilita	Control	cerebral	bloleeu back	Meyer	rehabilitatio
Khivintseva,	tion	(N = 27)		back	Assessme	
			circulation,			n.
Alexander V.	Combinin	and	acute period of	on VR	nt Lower	

International Journal of Medical and Exercise Science 2023; 9(2)

. Kalaan		E		•••••	E 1 1 1 1 1]
Kolsanov, Yulia V. Bushkova4an d Galina E. Ivanova et al., Randomized controlled study 2020	g Virtual Reality with Tactile Feedback	Experime ntal (N = 35) groups.	cerebrovascular accident	immersi on	Extremiti es scale, Berg Balance scale	
Saposnik G, Teasell R, Mamdani M, Hall J, McIlroy W, Cheung D, Thorpe KE, Cohen LG, Bayley M	Effectiven ess of Virtual Reality Using Wii Gaming Technolog y in Stroke Rehabilita tion	2-week Total (N=22)	18 to 85 years of age having a first-time ischemic or hemorrhagic stroke were eligible for the study.	VRWii gaming technol ogy	Wolf Motor Function Test, Box and Block Test, and Stroke Impact Scale	Participants in the VRWii arm had a significant improvemen t in mean motor function
Luque- Moreno, Carlos &Kiper, Paweł& Solís Marcos, Ignacio & Agostini, Michela &Polli, Andrea &Turolla, Andrea & Oliva- Pascual-Vaca, Angel. (2021).	Virtual Reality and Physiothe rapy in Post- Stroke Functiona I Re- Education of the Lower Extremity : A Controlle d Clinical Trial on a New Approach	(VR + CP; n = 10) 1 h VR and 1 h of conventio nal physiothe rapy v	diagnosis of a first stroke (ischemic or hemorrhagic	Virtual Reality	Functiona I Ambulato ry Scale (FAC), Functiona I Independ ence Measure (FIM), Fugl- Meyer Assessme nt (FM), Berg Balance Scale (BBS), and Trunk Control Test (TCT)	The findings suggest that VR intervention is a viable therapeutic option for post-stroke functional re-education of the LE, with the potential to be an optimum complement to conventional physical therapy.

Miclaus, R.	Lower	experime	stroke survivors	virtual	Functiona	VR
S., Roman,	Extremity	ntal group	after the	reality	1	rehabilitatio
N., Henter,	Rehabilita	(n = 31)	subacute phase,	(VR)	Independ	n technology
R., &Caloian,	tion in	control	at least six	therapy	ence	with MT
S. (2021)	Patients	group (n =	months post-	and	Measure	exercises
prospective,	with Post-	28)	stroke	mirror	(FIM) <i>,</i>	creates a
randomized	Stroke			therapy	Modified	more
trial	Sequelae			(MT)	Rankin	favorable
	through				Scale	environment
	Virtual				(MRS),	for lower
	Reality				Modified	extremity
	Associate				Ashworth	rehabilitatio
	d with				Scale	n in chronic
	Mirror				(MAS) <i>,</i>	patients
	Therapy				and Fugl	after stroke,
					Meyer	by combining
					Lower	several types
					Extremity	of feedback,
					Assessme	with an
					nt (FMLE).	increased
					Manual	impact on
					Muscle	neuroplastici
					Testing	ty.
					(MMT)	
Felipe FA, de	Evaluatio	29 review	studies on	VR	Fugl-	This study
Carvalho FO,	n	articles	patients with	therapy	Meyer	found that
Silva ÉR,	instrumen		stroke		Assessme	patients with
Santos NGL,	ts for		undergoing		nt	stroke,
Fontes PA, de	physical		therapy using		WolfMoto	treated or
Almeida AS,	therapy		VR		r Function	not with VR,
Garção DC,	using				Test	had their
Nunes PS, de	virtual					functional
Souza Araújo	reality in					responses
AA2020	stroke					evaluated by
Randomised	patients:					various
studies	а					instruments
	systemati					that had the
	c review					same
						purpose,
						making it
						difficult to
						compare
						studies and
						to perform a

						meta- analysis to validate the importance of VR use in these patients
Anat mirelman,Be njamin L.Patritti,Paol o Bonato, Judith E. Deutsch Randomized controlled study.2010	Effect of Virtual Reality Training on Gait Biomecha nics of Individual s Post - Stroke	4 weeks / 15 men 3 women	Hemiparesis stroke with gait deficit	Study group (n=9) virtual reality (n=9) non virtual reality group	Kinematic and kinetic gait paramete rs	As a result of training, subjects in the VR group displayed a considerably greater increase in ankle power generation at push-off (p=0.036). The VR group demonstrate d a higher post-training change in ankle ROM (19.5%) than the NVR group (3.3%). Significant differences in knee ROM on the affected side differences in knee ROM on the affected side during stance and swing were discovered, with the VR group showing the greatest alteration. There were no significant

						changes in hip kinematics or kinetics after training.
Yu- Hyung Park, Chi – ho Lee, Byoung– HeeLee Randomized controlled study, 2013	Clinical Usefulnes s of the Virtual Reality – Based Postural Control Training on the Gait Ability in Patients with Stroke	Sixteen weeks (stroke patient)	Ability to walk independently. Able to understand.	Study group (VR,n=8) experim ental group,(C Pt,n=8) control group	GAIT Rite system for spatiotem poral gait ability 10 MWT for functional gait ability	Study revealed that VR group showed significant improvemen t, except for cadence at post training and follow- up within the experimental group. Study revealed that there is, no obvious significant improvemen t was observed within the control group. In between group comparisons, the experimental group (VR group) showed significantly group(VR group) showed significantly greater improvemen t only in stride length compared with the control

			group (P<
			0.05),
			however, no
			significant
			difference
			was
			observed in
			other gait
			parameters.

RESULT

The stroke patient who received VR interventions has showed improvement in their functional abilities. Various outcome measures were included in the studied Kinematic and kinetic gait parameters, 10 MWT, Functional walking ability, FUGL Meyer assessment(FMA-UE), Action reach arm test (ARAT), Wolf motor function test (WMFT), Box block test (BBT), Functional ambulation classification (FAC), Berg balance scale (BBS), Time up and go (TUG), Mini mental state examination (MMSE), Utrecht scale for evaluation of rehabilitation participation(USER-P), Stroke specific quality of life(SS-QOL), Fatigue severity scale (FFS).

DISCUSSION

Today a lot of physiotherapy interventions are available with specific features. This review aimed to find out the effectiveness of Virtual reality to improve gait parameters in stroke patients.14 articles were selected from BIOMED CENTRAL, MEDLINE, EMBASE, ACRI, Europa medico physica, BMI, PEDRO, Cochrane central register of controlled trials (CENTRAL), American physical therapy association, Google Scholar, Cochrane library etc. Chi-Ho Lee etal, in his study with 21 sample conducted a study based on augmented reality training for 30 minutes per day 3 days per week for a period of 4 weeks provide evidence that AR environment into postural control training for improving gait in stroke patient. Davide Corbetta et al, conducted a Systematic review with meta-analysis of randomized trials and concluded that adding extra VRBR time to standard rehabilitation also has some benefits^{11, 12}.

Anat Mirelman et al evaluated gait biomechanics after training with a virtual reality support the potential for recovery of force and power of the lower extremity for individuals with chronic hemiparesis ⁽¹³⁾.

Han Suk Lee et al, conducted ameta-analysis to examine whether virtual reality (VR) training is effective for lower limb function as well as upper limb and overall function in chronic stroke patients and stated that effects of VR programs on specific outcomes were most effective for improving muscle tension, followed by muscle strength, activities of daily living (ADL), joint range of motion, gait, balance, and kinematics¹⁴.

Huihui Cai et al, conducted a study with 36 patients with VR intervention and revealed that

VR is an improved method of stroke rehabilitation which can be helpful for clinical decision-making and future practice ¹⁵.

Alexander V. Zakharov et al, conducted a study in 2020 stated that application of rehabilitation with implicit interaction with VR environment produced by the robotics action has measurable significant influence on the restoration of the affected motor function of the lower limbs compared with standard rehabilitation therapy ⁽¹⁶⁾.

A pilot study conducted in the year 2010 states that VRWii gaming technology represents a safe, feasible, and potentially effective alternative to facilitate rehabilitation therapy and promote motor recovery after stroke. He also concluded that Virtual reality (VR) gaming systems are novel and potentially useful technologies that allow users to interact in 3 dimensions with a computer-generated scenario (a virtual world), engaging the mirror– neuron system¹⁾.

A recent study conducted in the year 2021 and stated that VR along with conventional showed a significant improvement in (FAC) Functional Ambulatory Scale and concluded that that the intervention with VR is a feasible treatment in the post-stroke functional re-education of the LE, with the potential to be an optimal complement of CP ¹⁸.

Roxana Steliana Miclaus et al conducted a study in the year 2021 and stated that virtual reality along with mirror therapy have better outcomes in lower extremity rehabilitation in post-stroke patients compared to standard physiotherapy¹⁹. A systematic review conducted in the year 2019 stated that VR in stroke rehabilitation results in significant improvements in motor function, muscle strength and balance in the lower limbs. Virtual reality (VR) technologies have been gaining importance in rehabilitation over the last 20 years²⁰.

CONCLUSION

This Systematic review concludes that various studies revealed that Virtual reality training is effective to improve the gait parameters in stroke patients. The video games used in therapeutic applications have advanced in recent years, particularly in terms of associating virtual stimuli with everyday situations. The image processing technology in the design of a system helps to motivate people with physical disabilities to increase the number of exercises performed, improving both the ability to move the affected limb as well as quality of life. This Systematic review concludes that various study reveals that Virtual reality training is effective to improve the gait parameters in stroke patients.

Conventional physiotherapy plus task specific training with a specific VR system optimize the results. The main role of the physiotherapist is important in the application and alteration of these with flexible software and hardware, to the individual demand of post-stroke clients. Overall treatment with VR is appropriate and boost the functional improvement. It also noticed that there was no significant trunk control reversal in all these studies. Because large figures of patients initiated with good trunk control. Virtual reality may allow therapists to deliver more repetitive training with more regular performance feedback, perhaps improving motor learning rate and Transfer of virtual reality-based gait and

balance training to community ambulation should be evaluated

Legion of studies have shown that VR technology combined with task-oriented training in stroke rehabilitation canister effectively to improve the lower limb function of stroke patients, it can also adequately advance the quality of life of stroke patients

Limitation

- Results are influenced by small samples
- Less publications were employed in the study.
- Inclusion of research with publication bias and diversity
- Recent studies abstract was not available/ The full text of one article was not available

REFERENCE

- Dickstein R, Abulaffio N. Postural sway of the affected and non-affected pelvis and leg in stance of hemiparetic patients. Arch Phys Med Rehabil 2000; 81:364e7.
- Pollock A, Baer G, Langhorne P, Pomeroy V. Physiotherapy treatment approaches for the recovery of postural control and lower limb function following stroke: a systematic review. Clin Rehabil 2007; 21:395e410.
- Olney SJ, Griffin MP, Monga TN, McBride ID.
 Work and power in gait of stroke patients.
 Arch Phys Med Rehabil 1991; 72:309-14.
- Winter DA. Biomechanical motor patterns in normal walking. J Mot Behav1983; 15:302– 30.
- Au-Yeung SS, Ng JT, Lo SK. Does balance or motor impairment discriminate the ambulatory status of stroke survivors? Am J Phys Med Rehabil 2003; 82:279e83.
- 6. Balasubramanian CK, Bowden MG, Neptune RR, Kautz SA. Relationship between step

length asymmetry and walking performance in subjects with chronic hemiparesis. Arch Phys Med Rehabil 2007; 88:43e9.

- Michaelsen SM, Dannenbaum R, Levin MF. Task-specific training with trunk restraint on arm recovery in stroke: randomized control trial. Stroke 2006; 37:186e92.
- Kim JH, Jang SH, Kim CS, Jung JH, You JH. Use of virtual reality to enhance balance and ambulation in chronic stroke: a double-blind, randomized controlled study. Am J Phys Med Rehabil 2009; 88:693e701.
- Deutsch J E, Paserchia C, Vecchione C, Mirelman A, Lewis JA, Boian R, et al. Improved gait and elevation speed of individuals post-stroke after lower extremity training in virtual environments. J Neurol Phys Ther 2004; 28:185e6.
- 10.Holden MK. Virtual environments for motor rehabilitation: review. Cyber psychol Behav 2005; 8:187e211.
- 11.Chi-Ho Lee, Yumi Kim, Byoung-Hee Lee, Augmented reality-based postural control training improves gait function in patients with stroke: Randomized controlled trial, Hong Kong Physiotherapy Journal, Volume 32, Issue 2.
- 12.Corbetta D, Imeri F, Gatti R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: a systematic review. J Physiother. 2015 Jul;61(3):117-24. doi: 10.1016/j.jphys.2015.05.017. Epub 2015 Jun 18. PMID: 26093805.
- Mirelman A, Patritti BL, Bonato P, Deutsch JE. Effects of virtual reality training on gait biomechanics of individual's post-stroke. Gait Posture. 2010 Apr;31(4):433-7.
- 14.Lee HS, Park YJ, Park SW. The Effects of Virtual Reality Training on Function in Chronic Stroke Patients: A Systematic

Review and Meta-Analysis. Biomed Res Int. 2019 Jun 18; 2019:7595639.

- 15. Cai H, Lin T, Chen L, Weng H, Zhu R, Chen Y, Cai G. Evaluating the effect of immersive virtual reality technology on gait rehabilitation in stroke patients: a study protocol for a randomized controlled trial. Trials. 2021 Jan 25;22(1):91.
- 16.Zakharov AV, Bulanov VA, Khivintseva EV, Kolsanov AV, Bushkova YV, Ivanova GE. Stroke affected lower limbs rehabilitation combining virtual reality with tactile feedback. Frontiers in Robotics and AI. 2020 Jul 9; 7:81.
- 17.Saposnik G, Teasell R, Mamdani M, Hall J, McIlroy W, Cheung D, Thorpe KE, Cohen LG, Bayley M; Stroke Outcome Research Canada (SOR Can) Working Group. Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke. 2010 Jul;41(7):1477-84.

- 18.Luque-Moreno, Carlos & Kiper, Paweł & Solís Marcos, Ignacio & Agostini, Michela & Polli, Andrea & Turolla, Andrea & Oliva-Pascual-Vaca, Angel. (2021). Virtual Reality and Physiotherapy in Post-Stroke Functional Re-Education of the Lower Extremity: A Controlled Clinical Trial on a New Approach. Journal of Personalized Medicine. 11. 1210. 10.3390.
- 19.Miclaus, R. S., Roman, N., Henter, R., & Caloian, S. (2021). Lower Extremity Rehabilitation in Patients with Post-Stroke Sequelae through Virtual Reality Associated with Mirror Therapy. International journal of environmental research and public health, 18(5), 2654.
- 20. Felipe FA, de Carvalho FO, Silva ÉR, Santos NGL, Fontes PA, de Almeida AS, Garção DC, Nunes PS, de Souza Araújo AA. Evaluation instruments for physical therapy using virtual reality in stroke patients: a systematic review. Physiotherapy.2020 Mar; 106:194-210.

Citation:

Amjad Annethattil, Mohammad Farraj, Al-Madzhar Jundam Ahmadul (2023). Effect of Virtual Reality in Gait Parameters Among Stroke- A Systematic Narrative Review, ijmaes; 9(2); 1547-1563.